Controlling Codling Moth and Oriental Fruit Moth in Apples Using Isomate TT

Deborah I. Breth, Cornell Cooperative Extension- Lake Ontario Fruit Program, 12690 NYS RT 31, Albion, NY 14411

Randall C. Paddock, Paddock Agricultural Services, 12420 Lake Shore Rd, Lyndonville, NY 14098

Elizabeth Tee, CCE-LOF, Program Assistant, 12690 NYS RT 31, Albion, NY 14411

Materials & Methods:

A demonstration of mating disruption (MD) using Isomate TT for codling moth and oriental fruit moth was conducted for three years in 2 orchards in western NY with a history of damage from CM and OFM at harvest. Kast Farms and Russell Farms were cooperators in the project with a 20-acre orchard on each site. A comparison block was chosen in the area for a grower standard (GS) comparison.

Isomate TT for codling moth and oriental fruit moth mating disruption were applied at Kast and Russell's MD plot before first flight at bloom, May 11-12 in 2006, May 8-9 in 2007 and April 29-30 in 2008. Twintubes were applied at a rate of 200 per acre, hung in the top third of the tree canopy using 10 ft poles. Eight workers finished the applications in 3 hours per 20 acres; it took approx. 1 hour per acre in trees that were 14 feet tall. In 2006 both orchards had Cyd-X applied to a 5-acre section of each orchard; Cyd-X was not used in 2007 and 2008.

Orchards were monitored using traps and pheromone lures, scouting, and harvest evaluations. Traps in the MD blocks for CM were hung in 4 locations on 10ft bamboo poles placed next to tree trunks, containing 10x lures & the OFM traps were hung in 4 locations in the trees at head height containing standard lures. The Grower Standard plots were monitored using traps and harvest evaluations. The traps in the Grower standard blocks were standard strength lures in Pherocon IIB traps, CM traps were hung on bamboo poles in the tree tops and OFM traps were hung at head height in the trees in two locations at each orchard. Traps and lures were changed on a 4 week schedule.

Degree day models were also maintained for each location using weather data for Albion for the Kast plot and Appleton South for Russell. The first sustained trap catch date collected in the grower standard traps were recorded for each site to initiate the accumulation of degree-days. Sprays for 1st generation CM were timed for 250 DD after first trap catch in the area and 10-14 days later. Subsequent sprays were timed according to high trap catches in the immediate area or in the MD plots.

Mid-season scouting for OFM damage consisted of on-tree evaluations of 20 fruit and 20 shoots per tree and 20 trees per plot, 10 each from the interior and exterior of the plot, in each of the disrupted plots. The plots were monitored after each generational flight of CM for fruit infestation.

Harvest Evaluations were conducted at the farm just before each block was harvested. The evaluations consisted of 1000 apple samples; 100 apples were harvested per tree randomly, 50 from the lower and mid-section of the tree and 50 from the top. The results for harvest evaluations are displayed in Table 1 for 2006, Table 2 for 2007 and 3 for 2008.

Spray records were collected from each grower for three years in the mating disruption blocks and the grower standards. Summaries of insecticide inputs and costs are shown in Tables 4 & 5.

Results:

The Figures 1-4 show the trap data for MD plots and Grower Standard (non-disrupted) plots. Trap catch in MD plots were suppressed well and never broke threshold for CM or OFM, while counts were higher in the Grower Standard plots. OFM peaked three to four times in 2006, 2007, and 2008 in non-disrupted orchards. CM peaked as many as 4 times exceeding the recommended trap threshold of 5 moths per trap often in the Growers Standard plots.

The harvest evaluation results show that Kast MD plot for all three seasons had no damage from internal leps compared to the grower standard plot with 3.4, 7.2, and 3.8% internal lep damage in 2006, 07, and 08, respectively. The Russell MD block had 0.1% internal lep damage in 2006, bu none in 2007-2008. There was no damage evident in the grower standards, although formal counts were not done.

Figures 7-12 show the accumulated DD base 50 F and Base 45 F which is used to determine the best spray timing for control of CM and OFM, respectively. The figures also show the rainfall for each location for 2006, 2007 & 2008. The CM DD model (developed by MSU) was used to time sprays for the first generation in 2006, 2007 & 2008, but trap data in the growers standard plots were taken into account for subsequent generations. The spray dates and costs are listed in the Appendix.

The insecticide applications from petal fall through harvest for control of CM and OFM are listed in Tables 4-5. Insecticides with marginal efficacy for CM and OFM, directed at obliquebanded leafroller are excluded from these tables. In Kast MD plots, the number of OP's was reduced from 5 in 2006 to one in 2008. In Russell MD plots, the number of OP's was reduced from 4 in 2006 to 2 in 2008. But in 2007, Russell's MD plot was not treated with OP's while substituting 2 Avaunt sprays at petal fall and 1 Assail for AM in August, resulting in increased costs in the MD plot but no difference in damage compared to the grower standard. In 2008, Russell's applied 2 OP in the MD plot compared to 3 in the grower standard but they were directed toward other pests. There were no special sprays applied for CM in 2008. In Kast's high pressure orchard, the total number of insecticides applied has decreased from 10 in 2006 to 3 in 2008 using a combination of Isomate CM/OFM TT and integrating new insecticides to replace OP's and pyrethroids which are losing control over these pests. In Russell's low pressure site, the total number of insecticides actually directed specifically to CM/OFM have been reduced to 1 application directed toward first generation of CM. Other sprays were directed at leafrollers, plum curculio, and apple maggot. However, it is important to note there has been an increase in the San Jose scale infestation in this orchard over the 3 year period and has reached a treatable level for 2009.

The cost of the spray program includes the cost of the Isomate product. The suggested retail of Isomate CM/OFM TT is \$119 per acre. This increases the cost of the insect management program significantly over the non-disrupted acreage. But in the case of Kast GS, it would have certainly improved the control of internal lep pest. In 2008 however, the cost of the MD spray program is only \$7 higher than the Grower standard spray program in the Kast plot but resulted in 3.6% internal lep damage in the non-disrupted standard.

In 2007, in the low pressure Russell site, MD allowed the removal of the latest insecticide compared to an additional spray in August required in the grower standard. The 3rd season in the high pressure kast Orchards allowed for safe removal of the special CM sprays in August and September. The only risk noted was the presence of 0.2% European corn borer and regular trap monitoring for apple maggot. The fruit from the Kast GS had sufficient larvae detected at the processing receiving station to be downgraded to juice, losing a potential 3-4 cents per pound each season. That loss would have more than paid for the cost of the pheromone.

Under a low pressure situation as in Russell's, if there is no impact on quality and grade of apples at harvest, it is difficult to document advantages other than managing insecticide resistance in the CM and OFM and reducing the human health risks associated with OP's. But it is clear that mating disruption is necessary to get control of CM/OFM under a high pressure situation as shown in the Kast blocks.

Figure 1. 2006 trap data for MD and Grower Standard – Kast.

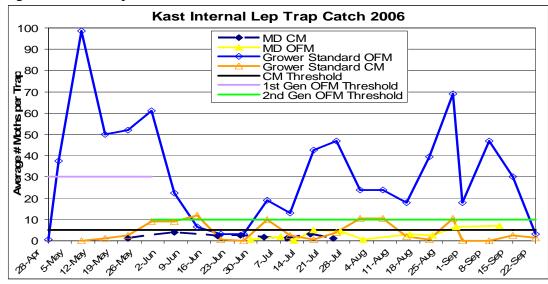


Figure 2. 2007 Trap data for MD and Grower Standard – Kast.

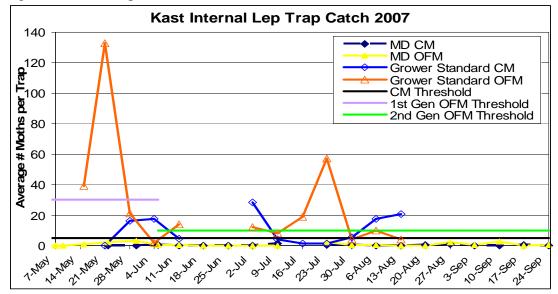


Figure 3. 2008 Trap data for MD and Grower Standard – Kast.

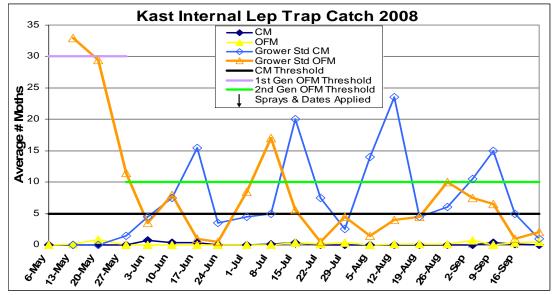


Figure 4. 2006 Trap data for MD and Grower Standard – Russell.

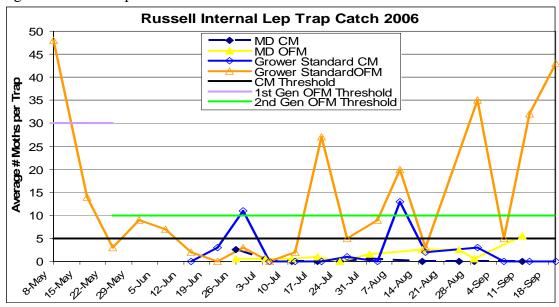


Figure 5. 2007 Trap data for MD and Grower Standard – Russell.

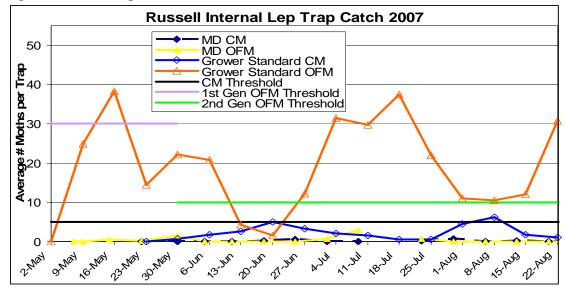
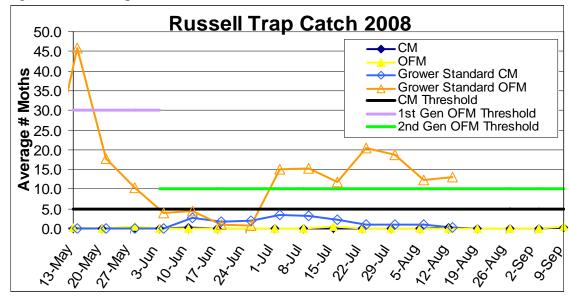
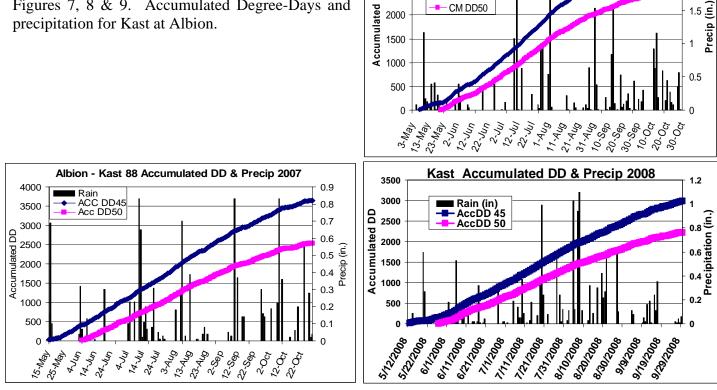



Figure 6. 2008 Trap data for MD and Grower Standard – Russell.

-	% Damage						
Treatment	IntLep	OBLR-OW	OBLR-S	AM	sting	TPB	PC
Kast							
MD W/Cidex	0.0	0.1	6.6	0.0	2.9	0.1	0.0
MD W/out Cidex	0.0	0.1	1.3	0.0	0.4	0.5	0.0
Grw Std Morrissey	3.4	2.0	15.0	0.2	3.2	0.6	0.8
Russell							
MD W/Cidex	0.1	0.0	0.3	0.0	0.5	0.0	0.9
MD W/out Cidex	0.0	0.0	0.1	0.0	0.4	0.0	0.0
Grw Std	ND	ND	ND	ND	ND	ND	ND

Table 1. 2006 Harvest evaluation for Mating Disruption trial.

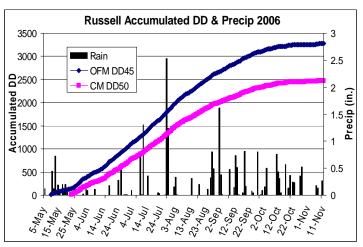

Table 2. 2007 Harvest Evaluations for	or Mating	Disruption trial.
---------------------------------------	-----------	-------------------

		% Damage						
	IntLep	OBLR-OW	OBLR-S	AM	sting	TPB	PC	
Kast								
MD	0	0.7	0.2	0	0	0.3	0.2	
Grower Std	7.2	2.4	0.8	0	3.4	0.4	0	
Russell								
MD	0	0.2	2.4	0	0	0.4	1.2	
Grower Std	0	0	1.3	0	0	0.3	0.2	

Table 3. 2008 Harvest Evaluations for Mating Disruption trial.% Damage

	IntLep	OBLR-OW	OBLR-SB	AM	Sting	TPB	PC
Kast							
MD	0.2*	0	0.2	0	0.2	0	0
Grower Std	3.8	0.2	0.4	0.0	0.2	0.0	0.0
* European corn bor	er						
Russell							
MD	0	0.0	0.2	0.0	0.2	0.1	0.0
Grower Std	0	0	N/A	N/A	N/A	N/A	N/A

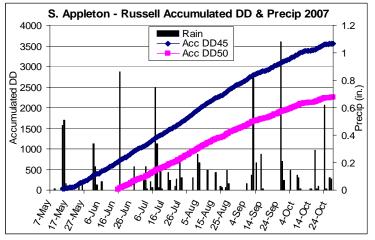
Figures 7, 8 & 9. Accumulated Degree-Days and

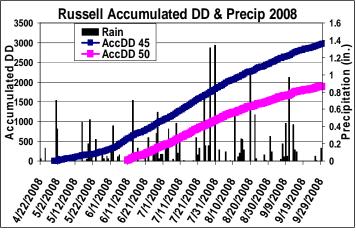

3500

3000

00 2500 Rain

OFM DD45


Figures 10, 11 & 12. Accumulated Degree-Days and precipitation for Russell at Appleton.



Kast Accumulated DD & Precip 2006

2.5

2

Cost for Kast.								
	2006			2007		2008		
KAST	MD + Cyd-X	MD - Cyd-X	Grw Std	MD	Grw Std	MD	Grw Std	
Pheromone	1	1	0	1	0	1	0	
OP	5	5	7	3	6	1	2	
IGR	0	0	0	1	1	1	1	
Pyrethroid	0	0	1	1	1	0	0	
Neonic	0	0	2	3	2	1	2	
Bio	3	0	0	0	0	0	0	
Avaunt	0	0	0	0	0	0	0	
Delegate							2	
Cost (\$)	336	208	199	304	201	188	181	
% internal lep	0	0	3.4	0	7.2	.2	3.8	

Table 4. Summary of Insecticide Applications by Class and

Table 5. Summary of Insecticide Applications by Class and Cost for Russell, excluding cost of Isomate

COST IOI INUS	2006			20		20	08
Russell	MD + Cyd- X	MD - Cyd- X	Grw Std	MD	Grw Std	MD	Grw Std
Pheromone	1	1		1		1	0
OP	4	4	4	0	4	2	3
IGR				1		1	1
Pyrethroid	1	1	1	0	0	0	0
Neonic	0	0	0	1	1	1	1
Bio	3	0	0	0	0	0	
Avaunt	0	0	0	2	0		
Cost (\$)	314	186	67	232	132	209	102
% Internal lep	0.1	0	0	0	0	0	0

Conclusions:

Mating Disruption is an excellent pest management tool when used under heavy pressure from CM and OFM. A significant reduction in sprays directed at CM and OFM was achieved without an increase in damage. MD for the season should also relieve the need to apply insecticide sprays in September for late harvested varieties reducing late season residues on the fruit.

If using MD over the long term, growers could possibly revert back to their previous IPM strategies and focus on control of plum curculio at the beginning and apple maggot at end of the season. The one caution is to understand that CM and OFM traps and damage must be monitored throughout the season, and other pests such as San Jose scale are on the rise with the increased use of more selective, non-OP insecticides.

Appendix – Spray Records 2006 Cyd-X treatments applied to 5 acres of the disrupted orchard.

Kast 88 MD) w/Cyd-X				w/o Cyd-X
Date	Material	Rate/A	\$/acre		
	Isomate CM/OFM TT	<mark>200</mark>	<mark>\$119.00</mark>		<mark>\$119.00</mark>
19-May	Lorsban 75WG	2 lbs	26.60	OP	26.60
13-Jun	CYD-X	3.2 oz	32.00	BIO	
21-Jun	CYD-X	3.2 oz	32.00	BIO	
21-Jun	Guthion solupak 50% wp	1.5 lbs	13.28	OP	13.28
23-Jul	CYD-X	3.2 oz	32.00	BIO	
23-Jul	Guthion solupak 50% wp	1.6 lbs	13.28	OP	13.28
29-Jul	CYD-X	3.2 oz	32.00	BIO	
5-Aug	Imidan 70-w	2.5 lbs	17.88	OP	17.88
6-Sep	Imidan 70-w	2.5 lbs	17.88	OP	17.88
		Total	\$335.92		207.92
Kast Morris	ey - Grower Standard				
Date	Material	Rate/A	\$/acre		
18-May	Azinphos-M 50 WSB	1.50 lbs	13.28	OP	
7-Jun	Calypso 4 Flowable	0.05 gal	36.48	Ν	
21-Jun	Guthion solupak 50% wp	1.50 lbs	13.28	OP	
28-Jun	Warrior	0.04 gal	9.06	Р	
21-Jul	Guthion solupak 50% wp	1.60 lbs	13.28	OP	
5-Aug	Imidan 70-w	2.60 lbs	18.59	OP	
16-Aug	Imidan 70-w	2.60 lbs	18.59	OP	
31-Aug	Imidan 70-w	2.60 lbs	18.59	OP	
4-Sep	Imidan 70-w	2.60 lbs	18.59	OP	
16-Sep	Assail 30SG	0.50lb	39.20	Ν	
		Total	198.94		

Russell M	D w/Cyd-X				w/o Cyd-X
Date	Material	Rate/A	\$/acre		
	Isomate CM/OFM TT	<mark>200</mark>	<mark>\$119.00</mark>		<mark>\$119.00</mark>
22-May	Azinphosmethyl 50W Soluble	1.5 lbs	13.28	OP	13.28
15-Jun	CYD-X	3.2 oz	32.00	BIO	
28-Jun	CYD-X	3.2 oz	32.00	BIO	
28-Jun	Warrior	0.04 gal	9.06	Р	9.06
17-Jul	Imidan 70-w	2.5 lbs	17.88	OP	17.88
24-Jul	CYD-X	3.2 oz	32.00	BIO	
3-Aug	CYD-X	3.2 oz	32.00	BIO	
8-Aug	Imidan 70-w	2.5 lbs	17.88	OP	17.88
24-Aug	Imidan 70-w	1.25 lbs	8.94	OP	8.94
		Total	\$314.04		186.04
Russell Gro	ower Standard				
Date	Material	Rate/A	\$/acre		
22-May	Azinphos-Methyl	1.5 lb	13.28	OP	
28-Jun	Warrior	0.04 gal	9.06	Р	
18-Jul	Imidan 70-w	2.5 lbs	17.88	OP	
8-Aug	Imidan 70-w	2.5 lbs	17.88	OP	
24-Aug	Imidan 70-w	1.25 lbs	8.94	OP	
		Total	67.04		

Spray Records 2007

Date	Material	Rate/A	Pesticide Type	Price/Unit	Cost/Acre
Dato	Isomate CM/OFM TT	200		\$0.60	\$119.00
29-May	Intrepid 2F	16 oz	G	\$1.80	\$28.80
29 May 29-May	Azinphosmethyl 50W	1.5 lbs	OP	\$9.80	\$14.70
	Soluble				
6-Jun	Azinphosmethyl 50W Soluble	1.5 lbs	OP	\$9.80	\$14.70
24-Jun	Danitol 2.4 ec spray	16 oz	Р	\$0.94	\$15.04
2-Jul	Assail 30SG	6 oz	Ν	\$5.00	\$30.00
22-Jul	Assail 30SG	6 oz	Ν	\$5.00	\$30.00
11-Aug	Imidan 70-W	3 lbs	OP	\$7.30	\$21.90
10-Sep	Assail 30SG	6 oz	N	\$5.00	\$30.00
·				Total	\$304.14
Kast Shan	Grower Std			Cost/Acre	
Date	Material	Rate/A	Pesticide Type	Price/Unit	Cost/Acre
29-May	Intrepid 2F	16 oz	G G	\$1.80	\$28.80
-	Azinphosmethyl 50W		OP		
29-May	Soluble	1.5 lbs		\$9.80	\$14.70
5-Jun	Azinphosmethyl 50W Soluble	1.5 lbs	OP	\$9.80	\$14.70
24-Jun	Danitol 2.4 ec spray	16 oz	Р	\$0.94	\$15.04
3-Jul	Assail 30SG	6 oz	Ν	\$5.00	\$30.00
22-Jul	Assail 30SG	6 oz	Ν	\$5.00	\$30.00
8-Aug	Azinphosmethyl 50W Soluble	1.6 lbs	OP	\$9.80	\$15.68
20-Aug	Imidan 70-W	3 lbs	OP	\$7.30	\$21.90
5-Sep	Azinphosmethyl 50W Soluble	1.5 lb	OP	\$9.80	\$14.70
18-Sep	Azinphosmethyl 50W Soluble	1.6 lbs	OP	\$9.80	\$15.68
				Total Cost/Acre	\$201.20
Russell -M	ID			CUSI/ACIE	
Date	Material	Rate/A	Pesticide Type	Price/Unit	Cost/Acre
2 0.10	Isomate CM/OFM TT	200		\$0.60	\$119.00
25-May	Intrepid 2F	16 oz	G	\$1.80	\$28.80
25-May	Avaunt WDG	6 oz	Other	\$4.50	\$27.00
8-Jun	Avaunt WDG	6 oz	Other	\$4.50	\$27.00
20-Jul	Assail 30SG	6 oz	N	\$5.00	\$30.00
20-Jui	Assall 5056	0.02		Total	\$231.80
				Cost/Acre	φ231.00
Russell Gr	ower Std	I			
Date	Material	Rate/A	Pesticide Type	Price/Unit	Cost/Acre
24-May	Intrepid 2F	16 oz	G	\$1.80	\$28.80
24-May	Azinphosmethyl 50W Soluble	1.5 lbs	OP	\$9.80	\$14.70
8-Jun	Azinphosmethyl 50W Soluble	1.5 lbs	OP	\$9.80	\$14.70
20-Jul	Assail 30SG	6 oz	N	\$5.00	\$30.00
6-Aug	Imidan 70-w	3 lbs	OP	\$7.30	\$21.90
21-Aug	Imidan 70-w	3 lbs	OP	\$7.30	\$21.90
			-	Total	\$132.00

Spray	Records	2008
-------	---------	------

Kast 88-					
Nd51 00-1			Pesticide	Price/Unit	Cost/Acre
Date	Spray	amt/A	Type	Price/Unit	Cost/Acre
29-Apr	Isomate CM/OFM TT	200	MD	\$0.60	\$119.00
29-Apr 24-May	Intrepid 2F	16 oz	IGR	\$1.84	\$29.38
24-May	Azinphosmethyl 50W Soluble	1.6 lbs	OP	\$8.90	\$14.24
5-Jun	Calypso 4 Flowable	5 oz	N	\$5.00	\$25.00
J-Juli	Calypso 4 I lowable	3.02		Total Cost/Acre	\$187.62
					φ107.02
Keel Ote					
Kast Stor	he House Grower Std		Destiside	Deles (List)	
Data	Sprov	omt/A	Pesticide	Price/Unit	Cost/Acre
Date	Spray	amt/A	Type OP	¢4.04	¢00.00
24-May	Intrepid 2F	16 oz	P	\$1.84	\$29.38
24-May	Azinphosmethyl 50W Soluble	1.6 lbs		\$8.90	\$14.24
6-Jun	Calypso 4 Flowable	5 oz	N	\$5.00	\$25.00
20-Jun	Calypso 4 Flowable	5 oz	N	\$5.00	\$25.00
22-Jul	Azinphosmethyl 50W Soluble	1.6 lbs	OP	\$8.90	\$14.24
28-Jul	Delegate WG	5.2 oz	OP	\$7.00	\$36.40
14-Aug	Delegate WG	5.2 oz	OP	\$7.00	\$36.40
				Total Cost/Acre	\$180.66
Russell -	MD				
Date	Spray	amt/A	Class	Price/Unit	Cost
30-Apr	Isomate CM/OFM TT	200	MD	\$0.60	\$119.00
23-May	Intrepid 2F	16	IGR	\$1.84	\$29.38
23-May	Azinphosmethyl 50W Soluble	1.5	OP	\$8.90	\$13.35
10-Jun	Calypso 4 Flowable	5	N	\$5.00	\$25.00
18-Jul	Imidan 70-w	3	OP	\$7.30	\$21.90
				Total Cost/Acre	\$208.63
Russell C	Grower Std	[
Date	Spray	amt/A	Pesticide	Price/Unit	Cost/Acre
			Туре		A
	-	16 oz	IGR	\$1.84	\$28.80
23-May	Azinphosmethyl 50W Soluble	1.5 lbs	OP	\$8.90	\$14.70
10-Jun	Calypso 4 Flowable	5 oz	N	\$5.00	\$14.70
17-Jul	lmidan 70-w	3 lbs	OP	\$7.30	\$21.90
7-Aug	Imidan 70-w	3 lbs	OP	\$7.30	\$21.90
				Total Cost/Acre	\$102.00